注:本文是转载,但不是100%的转载,可能稍微有些出入,原文地址点击这里

基本概念


早期的VPP本身的node框架比较固定,各个node之间逻辑连接已经固化。
为此新版本增加了feature机制,每个feature是一个node,用户可以启用/停止某个或某些feature。
用户也可以自己写插件,把自定义node(自己的业务逻辑)加入到指定位置。

vnet_feature_arc_registration_t

vpp将feature分成不同的组,每组feature称为一个arc。arc中的feature按照代码指定的顺序串接起来。arc结构将记录这组feature的起始node和结束node。系统初始化时完成每个feature的连接。
VNET_FEATURE_ARC_INIT宏用来注册arc。在arc中指定的起始node中,必须调用vnet_feature_arc_start函数,才能正式进入feature机制业务流程,该函数会将下一跳强行指定为arc中的下一个feature。

vnet_feature_registration_t

一个feature等价于一个node,用户通过VNET_FEATURE_INIT宏定义自己的feature,指定需要加入哪个arc,以及在arc中的哪个相对位置。每个feature都可以通过外部命令行启用/停止。

关键函数


VNET_FEATURE_ARC_INITVNET_FEATURE_ARC_INIT宏将arc和feature保存到全局变量feature_main中。此时arc和feature还未被”加工”,只是基本的原料。

Feature初始化

clib_error_t *vnet_feature_init将把arc和feature初始化,并组织成最终的数据结构填充到vnet_feature_main_t feature_main中,代码比较简单。这里只对vnet_feature_main_t描述即可。

typedef struct {
    // feature arc configuration list
    //VNET_FEATURE_ARC_INIT宏中注册的arc保存在这里,顺序不定,也没有意义。
    vnet_feature_arc_registration_t *next_arc;
    /*
     * vnet_feature_init()中来初始化该成员,
     * 把arc按名字组织成hash表,为何要用双重指针???
     * 博主认为是bug,后面明明是当hash表用么。又不是hash数组
     */
    uword **arc_index_by_name;

    /*
     * feature path configuration lists
     * VNET_FEATURE_ARC_INIT宏中注册的feature保存在这里,顺序不定,也没有意义。
     */
    vnet_feature_registration_t *next_feature;
    /*
     * vnet_feature_init()中来初始化该成员,把feature分配到不同arc中,
     * 并且根据before和after变量来决定feature顺序。
     * 这里看作是一个数组,用arc的index做索引
     */
    vnet_feature_registration_t **next_feature_by_arc;
    /*
     * vnet_feature_init()中来初始化该成员,把feature按名字组织成hash表数组,
     * arc的index索引到对应hash表,node name来做hash表的key
     */
    uword **next_feature_by_name;

    // feature config main objects
    vnet_feature_config_main_t *feature_config_mains;

    // Save partial order results for show command
    char ***feature_nodes;

    /*
     * bitmap of interfaces which have driver rx features configured
     * bitmap数组,arc的index索引对应bitmap表,决定该网卡是否启用了该arc中的feature
     */
    uword **sw_if_index_has_features;

    // feature reference counts by interface
    i16 **feature_count_by_sw_if_index;

    /*
     * Feature arc index for device-input
     * 从收包开始就使用feature机制了,这个变量给收包驱动用。
     * 追踪了下代码,这个变量属于device_input_node这个node,
     * 但是这个node业务函数为空,而且状态是VLIB_NODE_STATE_DISABLED。
     * 那这是干什么用的呢?层层追踪,原来这个node纯粹是个dump node,
     * 但是它是一个arc起点。这个arc的index保存在了下面变量中。
     * 然后真正的网卡收包node中会借用这个index当成自己的,
     * 调用vnet_feature_start_device_input_x1这类函数,
     * 开始了feature之旅。真TMD恶心,代码还能写的更难懂点么。
     */
    u8 device_input_feature_arc_index;

    // convenience
    vlib_main_t *vlib_main;
    vnet_main_t *vnet_main;
} vnet_feature_main_t;

arc初始化

vnet_feature_arc_init把属于某arc的无序的feature排序成有序状态。feature注册时可以指定在某些node前面,和某些node后面。

clib_error_t *vnet_feature_arc_init (vlib_main_t * vm,
            vnet_config_main_t * vcm,
            char **feature_start_nodes,
            int num_feature_start_nodes,
            vnet_feature_registration_t * first_reg,
            char ***in_feature_nodes)
{
    ...

    // pass 1, collect feature node names, construct a before b pairs
    while (this_reg)
    {
        node_name = format (0, "%s%c", this_reg->node_name, 0);
        //vec_len (node_names) 指的是当前node_names数组中元素个数
        hash_set (reg_by_index, vec_len (node_names), (uword) this_reg);

        //现在feature用index来代表了
        hash_set_mem (index_by_name, node_name, vec_len (node_names));

        vec_add1 (node_names, node_name);

        //runs_before是个数组,可以保存有多个node。
        these_constraints = this_reg->runs_before;
        while (these_constraints && these_constraints[0])
        {
            ...
        }

        //runs_after是个数组,可以保存有多个node。
        these_constraints = this_reg->runs_after;
        while (these_constraints && these_constraints[0])
        {
            ...
        }

        this_reg = this_reg->next;
    }
    //至此,把feature之间顺序关系表达为"A,B"字符串,代表A在B前面。

    //其实就是该arc中所有feature个数
    n_features = vec_len (node_names);
    //可以看作生成一个(n_features X n_features)的二维数组
    orig = clib_ptclosure_alloc (n_features);

    for (i = 0; i < vec_len (constraints); i++)
    {
        ...
    }

    ...

    /* see if we got a partial order... */
    if (vec_len (result) != n_features)
      return clib_error_return (0, "%d feature_init_cast no partial order!");
    //到这里,feature的顺序关系就计算成功了。保存在result中,每个feature用index代表。
    /*
     * We win.
     * Bind the index variables, and output the feature node name vector
     * using the partial order we just computed. Result is in stack
     * order, because the entry with the fewest constraints (e.g. none)
     * is output first, etc.
     */

    //把feature索引按顺序转换成对应的vnet_feature_registration_t信息,保存在feature_nodes中
    for (i = n_features - 1; i >= 0; i--)
    {
        p = hash_get (reg_by_index, result[i]);
        ASSERT (p != 0);
        this_reg = (vnet_feature_registration_t *) p[0];
        if (this_reg->feature_index_ptr)
          *this_reg->feature_index_ptr = n_features - (i + 1);
        this_reg->feature_index = n_features - (i + 1);
        vec_add1 (feature_nodes, this_reg->node_name);
    }

    /* Set up the config infrastructure */
    /*feature顺序现在保存在feature_nodes中,现在要把这个关系保存到vnet_config_main_t中了。
      注意每个arc都有一份自己的vnet_config_main_t*/
    vnet_config_init (vm, vcm,
                feature_start_nodes,
                num_feature_start_nodes,
                feature_nodes, vec_len (feature_nodes));

    /* Save a copy for show command */
    *in_feature_nodes = feature_nodes;

    /* Finally, clean up all the shit we allocated */
    /* *INDENT-OFF* */

    ...
}

至此,feature已经计算好了顺序,但是还是没有真正把各个feature连接起来。

连接Feature

连接各个feature的真正工作,最终交由vnet_config_add_featurevnet_config_del_feature完成。

u32 vnet_config_add_feature (vlib_main_t * vm,
            vnet_config_main_t * cm,
            u32 config_string_heap_index,
            u32 feature_index,
            void *feature_config, u32 n_feature_config_bytes)
{
    ...

    //现有的feature基础上增加参数中传来的新feature。
    //注意每个feature都是这么一个个添加进来的。
    vec_add2 (new_features, f, 1);
    f->feature_index = feature_index;
    f->node_index = node_index;

    /*
     * 不同feature可能有自己独特的config内容,
     * 因此参数中的feature_config和n_feature_config_bytes就是用来干这事的,
     * 保存在f->feature_config中,没有私有内容,则计算出来为0。
     */
    n_feature_config_u32s =
        round_pow2 (n_feature_config_bytes,
                    sizeof (f->feature_config[0])) /
        sizeof (f->feature_config[0]);
    vec_add (f->feature_config, feature_config, n_feature_config_u32s);

    //上文所知,feature的index也代表着在arc中的顺序,这里排下序。
    if (vec_len (new_features) > 1)
      vec_sort_with_function (new_features, feature_cmp);

    if (old)
      remove_reference (cm, old);

    //开始干活了,连接每个feature。config内存也会更新
    new = find_config_with_features (vm, cm, new_features);
    new->reference_count += 1;

    /*
     * User gets pointer to config string first element
     * (which defines the pool index
     * this config string comes from).
     */
    vec_validate (cm->config_pool_index_by_user_index,
                new->config_string_heap_index + 1);
    cm->config_pool_index_by_user_index[new->config_string_heap_index + 1]
        = new - cm->config_pool;
    return new->config_string_heap_index + 1;
}

u32 vnet_config_del_feature (vlib_main_t * vm,
            vnet_config_main_t * cm,
            u32 config_string_heap_index,
            u32 feature_index,
            void *feature_config, u32 n_feature_config_bytes)
{
    vnet_config_t *old, *new;
    vnet_config_feature_t *new_features, *f;
    u32 n_feature_config_u32s;

    //每个feature组合都有一个对应的config内存。
    u32 *p = vnet_get_config_heap (cm, config_string_heap_index);
    //config内存第一个32bit,保存了该config的索引号。
    //这代码很恶心,作者为啥不弄个结构出来,还好懂些。
    old = pool_elt_at_index (cm->config_pool, p[-1]);

    n_feature_config_u32s =
        round_pow2 (n_feature_config_bytes,
                    sizeof (f->feature_config[0])) /
        sizeof (f->feature_config[0]);

    /* Find feature with same index and opaque data. */
    //找到要删除的目标feature
    vec_foreach (f, old->features)
    {
        if (f->feature_index == feature_index
                    && vec_len (f->feature_config) == n_feature_config_u32s
                    && (n_feature_config_u32s == 0
                        || !memcmp (f->feature_config, feature_config,
                            n_feature_config_bytes)))
          break;
    }

    /* Feature not found. */
    if (f >= vec_end (old->features))
      return config_string_heap_index;    // return original config index

    //生成一组新feature,不包含目标feature。
    new_features = duplicate_feature_vector (old->features);
    f = new_features + (f - old->features);
    vnet_config_feature_free (f);
    vec_delete (new_features, 1, f - new_features);

    /*
     * must remove old from config_pool now as it may be expanded and change
     * memory location if the following function find_config_with_features()
     * adds a new config because none of existing config's has matching features
     * and so can be reused
     */
    remove_reference (cm, old);
    //新生成的feature重新连接下,config内存也会更新
    new = find_config_with_features (vm, cm, new_features);
    new->reference_count += 1;

    vec_validate (cm->config_pool_index_by_user_index,
                new->config_string_heap_index + 1);
    cm->config_pool_index_by_user_index[new->config_string_heap_index + 1]
        = new - cm->config_pool;
    return new->config_string_heap_index + 1;
}


static vnet_config_t *find_config_with_features (vlib_main_t * vm,
            vnet_config_main_t * cm,
            vnet_config_feature_t * feature_vector)
{
    u32 last_node_index = ~0;
    vnet_config_feature_t *f;
    u32 *config_string;
    uword *p;
    vnet_config_t *c;

    config_string = cm->config_string_temp;
    cm->config_string_temp = 0;
    if (config_string)
      _vec_len (config_string) = 0;

    vec_foreach (f, feature_vector)
    {
        //按顺序连接各个node
        f->next_index = add_next (vm, cm, last_node_index, f->node_index);
        last_node_index = f->node_index;

        //下一个node在本node中的slot号,保存进config_string
        vec_add1 (config_string, f->next_index);

        //slot号后面还可以保存本node特有的config信息,可以为0大小
        vec_add (config_string, f->feature_config, vec_len (f->feature_config));
    }

    //确保最终连接到end node
    if (last_node_index == ~0 || last_node_index != cm->end_node_index)
    {
        u32 next_index = add_next (vm, cm, last_node_index, cm->end_node_index);
        vec_add1 (config_string, next_index);
    }

    //看看hash表里是不是有同样的config_string,注意这里比较的是config_string内容,不是地址
    p = hash_get_mem (cm->config_string_hash, config_string);
    if (p)
    {
        //大多数情况下config_string不会重复,除非旧的还被别的模块引用了没释放,
        //那这里就继续引用旧的释放新的
        cm->config_string_temp = config_string;   /* we'll use it again later. */
        free_feature_vector (feature_vector);
        c = pool_elt_at_index (cm->config_pool, p[0]);
    }
    else
    {
        u32 *d;

        //分配新的config结构
        pool_get (cm->config_pool, c);
        c->index = c - cm->config_pool;
        c->features = feature_vector;
        c->config_string_vector = config_string;

        /*
         * Allocate copy of config string in heap.
         * VLIB buffers will maintain pointers to heap as they read out
         * configuration data.
         */
        c->config_string_heap_index
            = heap_alloc (cm->config_string_heap, vec_len (config_string) + 1,
                        c->config_string_heap_handle);

        /* First element in heap points back to pool index. */
        d =
            vec_elt_at_index (cm->config_string_heap,
                        c->config_string_heap_index);
        //注意这里,config第一个4字节保存的是config索引号,
        //之后才是slot号-私有config-slot号-私有config ......
        d[0] = c->index;
        clib_memcpy (d + 1, config_string, vec_bytes (config_string));
        hash_set_mem (cm->config_string_hash, config_string, c->index);

        c->reference_count = 0;   /* will be incremented by caller. */
    }

    return c;
}

现在各个feature node已经连接好了,连接信息也保存到了config中,接下来就是在业务node中使用了。

启动arc中的Feature

在需要开始使用feature机制的业务node中调用如下函数即可,注意该业务node必须是arc中的起始node。

static_always_inline void vnet_feature_arc_start (u8 arc,
            u32 sw_if_index, u32 * next0, vlib_buffer_t * b0)
{
    vnet_feature_arc_start_with_data (arc, sw_if_index, next0, b0, 0);
}

此函数会将next0修改为下一跳feature。feature的顺序在上文中已经确定。

获取下一跳feature的逻辑很简单,在函数:

always_inline void *vnet_get_config_data (vnet_config_main_t * cm,
            u32 * config_index, u32 * next_index, u32 n_data_bytes)
{
    u32 i, n, *d;

    //vlib_buffer_t->current_config_index用来记录执行到了哪个feature了,注意最初值为1。
    i = *config_index;

    d = heap_elt_at_index (cm->config_string_heap, i);

    n = round_pow2 (n_data_bytes, sizeof (d[0])) / sizeof (d[0]);

    //本feature下一跳的slot号
    *next_index = d[n];

    //记录下一跳feature的config索引
    *config_index = (i + n + 1);

    return (void *) d;
}
最后修改:2021 年 08 月 18 日
如果觉得我的文章对你有用,请随意赞赏